181 research outputs found

    The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications

    Get PDF
    The kINPen® plasma jet was developed from laboratory prototype to commercially available non-equilibrium cold plasma jet for various applications in materials research, surface treatment and medicine. It has proven to be a valuable plasma source for industry as well as research and commercial use in plasma medicine, leading to very successful therapeutic results and its certification as a medical device. This topical review presents the different kINPen plasma sources available. Diagnostic techniques applied to the kINPen are introduced. The review summarizes the extensive studies of the physics and plasma chemistry of the kINPen performed by research groups across the world, and closes with a brief overview of the main application fields

    Using a dual plasma process to produce cobalt--polypyrrole catalysts for the oxygen reduction reaction in fuel cells -- part II: analysing the chemical structure of the films

    Full text link
    The chemical structure of cobalt--polypyrrole -- produced by a dual plasma process -- is analysed by means of X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption spectroscopy (NEXAFS), X-ray diffraction (XRD), energy-dispersive X-Ray spectroscopy (EDX) and extended x-ray absorption spectroscopy (EXAFS).It is shown that only nanoparticles of a size of 3\,nm with the low temperature crystal structure of cobalt are present within the compound. Besides that, cobalt--nitrogen and carbon--oxygen structures are observed. Furthermore, more and more cobalt--nitrogen structures are produced when increasing the magnetron power. Linking the information on the chemical structure to the results about the catalytic activity of the films -- which are presented in part I of this contribution -- it is concluded that the cobalt--nitrogen structures are the probable catalytically active sites. The cobalt--nitrogen bond length is calculated as 2.09\,\AA\ and the carbon--nitrogen bond length as 1.38\,\AA

    Towards a Machine-Learned Poisson Solver for Low-Temperature Plasma Simulations in Complex Geometries

    Full text link
    Poisson's equation plays an important role in modeling many physical systems. In electrostatic self-consistent low-temperature plasma (LTP) simulations, Poisson's equation is solved at each simulation time step, which can amount to a significant computational cost for the entire simulation. In this paper, we describe the development of a generic machine-learned Poisson solver specifically designed for the requirements of LTP simulations in complex 2D reactor geometries on structured Cartesian grids. Here, the reactor geometries can consist of inner electrodes and dielectric materials as often found in LTP simulations. The approach leverages a hybrid CNN-transformer network architecture in combination with a weighted multiterm loss function. We train the network using highly-randomized synthetic data to ensure the generalizability of the learned solver to unseen reactor geometries. The results demonstrate that the learned solver is able to produce quantitatively and qualitatively accurate solutions. Furthermore, it generalizes well on new reactor geometries such as reference geometries found in the literature. To increase the numerical accuracy of the solutions required in LTP simulations, we employ a conventional iterative solver to refine the raw predictions, especially to recover the high-frequency features not resolved by the initial prediction. With this, the proposed learned Poisson solver provides the required accuracy and is potentially faster than a pure GPU-based conventional iterative solver. This opens up new possibilities for developing a generic and high-performing learned Poisson solver for LTP systems in complex geometries

    Non-steroidal anti-inflammatory drugs: recent advances in the use of synthetic COX-2 inhibitors

    Get PDF
    Cyclooxygenase (COX) enzymes comprise COX-1 and COX-2 isoforms and are responsible for prostaglandin production. Prostaglandins have critical roles in the inflammation pathway and must be controlled by administration of selective nonsteroidal anti-inflammatory drugs (NSAIDs). Selective COX-2 inhibitors have been among the most used NSAIDs during the ongoing coronavirus 2019 pandemic because they reduce pain and protect against inflammation-related diseases. In this framework, the mechanism of action of both COX isoforms (particularly COX-2) as inflammation mediators must be reviewed. Moreover, proinflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-6, IL-1β, and IL-8 must be highlighted due to their major participation in upregulation of the inflammatory reaction. Structural and functional analyses of selective COX-2 inhibitors within the active-site cavity of COXs could enable introduction of lead structures with higher selectivity and potency against inflammation with fewer adverse effects. This review focuses on the biological activity of recently discovered synthetic COX-2, dual COX-2/lipoxygenase, and COX-2/soluble epoxide hydrolase hybrid inhibitors based primarily on the active motifs of related US Food and Drug Administration-approved drugs. These new agents could provide several advantages with regard to anti-inflammatory activity, gastrointestinal protection, and a safer profile compared with those of the NSAIDs celecoxib, valdecoxib, and rofecoxib

    The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications

    Get PDF
    ABSTRACT: The kINPen® plasma jet was developed from laboratory prototype to commercially available non-equilibrium cold plasma jet for various applications in materials research, surface treatment and medicine. It has proven to be a valuable plasma source for industry as well as research and commercial use in plasma medicine, leading to very successful therapeutic results and its certification as a medical device. This topical review presents the different kINPen plasma sources available. Diagnostic techniques applied to the kINPen are introduced. The review summarizes the extensive studies of the physics and plasma chemistry of the kINPen performed by research groups across the world, and closes with a brief overview of the main application fields
    • …
    corecore